Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Critical points of random polynomials and characteristic polynomials of random matrices (1412.4703v2)

Published 15 Dec 2014 in math.PR

Abstract: Let $p_n$ be the characteristic polynomial of an $n \times n$ random matrix drawn from one of the compact classical matrix groups. We show that the critical points of $p_n$ converge to the uniform distribution on the unit circle as $n$ tends to infinity. More generally, we show the same limit for a class of random polynomials whose roots lie on the unit circle. Our results extend the work of Pemantle-Rivin and Kabluchko to the setting where the roots are neither independent nor identically distributed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.