Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Weak limit theorem of a two-phase quantum walk with one defect (1412.4309v2)

Published 14 Dec 2014 in math-ph and math.MP

Abstract: We attempt to analyze a one-dimensional space-inhomogeneous quantum walk (QW) with one defect at the origin, which has two different quantum coins in positive and negative parts. We call the QW "the two-phase QW", which we treated concerning localization theorems [10]. The two-phase QW has been expected to be a mathematical model of the topological insulator [16] which is an intense issue both theoretically and experimentally [3,5,11]. In this paper, we derive the weak limit theorem describing the ballistic spreading, and as a result, we obtain the mathematical expression of the whole picture of the asymptotic behavior. Our approach is based mainly on the generating function of the weight of the passages. We emphasize that the time-averaged limit measure is symmetric for the origin [10], however, the weak limit measure is asymmetric, which implies that the weak limit theorem represents the asymmetry of the probability distribution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.