Papers
Topics
Authors
Recent
2000 character limit reached

Oriented Edge Forests for Boundary Detection (1412.4181v2)

Published 13 Dec 2014 in cs.CV

Abstract: We present a simple, efficient model for learning boundary detection based on a random forest classifier. Our approach combines (1) efficient clustering of training examples based on simple partitioning of the space of local edge orientations and (2) scale-dependent calibration of individual tree output probabilities prior to multiscale combination. The resulting model outperforms published results on the challenging BSDS500 boundary detection benchmark. Further, on large datasets our model requires substantially less memory for training and speeds up training time by a factor of 10 over the structured forest model.

Citations (146)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.