Edge Preserving Multi-Modal Registration Based On Gradient Intensity Self-Similarity (1412.3914v1)
Abstract: Image registration is a challenging task in the world of medical imaging. Particularly, accurate edge registration plays a central role in a variety of clinical conditions. The Modality Independent Neighbourhood Descriptor (MIND) demonstrates state of the art alignment, based on the image self-similarity. However, this method appears to be less accurate regarding edge registration. In this work, we propose a new registration method, incorporating gradient intensity and MIND self-similarity metric. Experimental results show the superiority of this method in edge registration tasks, while preserving the original MIND performance for other image features and textures.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.