Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On a random search tree: asymptotic enumeration of vertices by distance from leaves (1412.2796v3)

Published 8 Dec 2014 in math.CO

Abstract: A random binary search tree grown from the uniformly random permutation of $[n]$ is studied. We analyze the exact and asymptotic counts of vertices by rank, the distance from the set of leaves. The asymptotic fraction $c_k$ of vertices of a fixed rank $k\ge 0$ is shown to decay exponentially with $k$. Notoriously hard to compute, the exact fractions $c_k$ had been determined for $k\le 3$ only. We computed $c_4$ and $c_5$ as well; both are ratios of enormous integers, denominator of $c_5$ being $274$ digits long. Prompted by the data, we proved that, in sharp contrast, the largest prime divisor of $c_k$'s denominator is $2{k+1}+1$ at most. We conjecture that, in fact, the prime divisors of every denominator for $k>1$ form a single interval, from $2$ to the largest prime not exceeding $2{k+1}+1$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube