Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Minimum degree condition for spanning generalized Halin graphs (1412.2374v1)

Published 7 Dec 2014 in math.CO

Abstract: A spanning tree with no vertices of degree 2 is called a Homeomorphically irreducible spanning tree\,(HIST). Based on a HIST embedded in the plane, a Halin graph is formed by connecting the leaves of the tree into a cycle following the cyclic order determined by the embedding. Both of the determination problems of whether a graph contains a HIST or whether a graph contains a spanning Halin graph are shown to be NP-complete. It was conjectured by Albertson, Berman, Hutchinson, and Thomassen in 1990 that a {\it every surface triangulation of at least four vertices contains a HIST}\,(confirmed). And it was conjectured by Lov\'asz and Plummer that {\it every 4-connected plane triangulation contains a spanning Halin graph}\,(disproved). Balancing the above two facts, in this paper, we consider generalized Halin graphs, a family of graph structures which are "stronger" than HISTs but "weaker" than Halin graphs in the sense of their construction constraints. To be exact, a generalized Halin graph is formed from a HIST by connecting its leaves into a cycle. Since a generalized Halin graph needs not to be planar, we investigate the minimum degree condition for a graph to contain it as a spanning subgraph. We show that there exists a positive integer $n_0$ such that any 3-connected graph with $n\ge n_0$ vertices and minimum degree at least $(2n+3)/5$ contains a spanning generalized Halin graph. As an application, the result implies that under the same condition, the graph $G$ contains a wheel-minor of order at least $n/2$. The minimum degree condition in the result is best possible.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.