Left-symmetric algebras of derivations of free algebras (1412.2360v2)
Abstract: A structure of a left-symmetric algebra on the set of all derivations of a free algebra is introduced such that its commutator algebra becomes the usual Lie algebra of derivations. Left and right nilpotent elements of left-symmetric algebras of derivations are studied. Simple left-symmetric algebras of derivations and Novikov algebras of derivations are described. It is also proved that the positive part of the left-symmetric algebra of derivations of a free nonassociative symmetric $m$-ary algebra in one free variable is generated by one derivation and some right nilpotent derivations are described.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.