Papers
Topics
Authors
Recent
2000 character limit reached

Left-symmetric algebras of derivations of free algebras (1412.2360v2)

Published 7 Dec 2014 in math.RA

Abstract: A structure of a left-symmetric algebra on the set of all derivations of a free algebra is introduced such that its commutator algebra becomes the usual Lie algebra of derivations. Left and right nilpotent elements of left-symmetric algebras of derivations are studied. Simple left-symmetric algebras of derivations and Novikov algebras of derivations are described. It is also proved that the positive part of the left-symmetric algebra of derivations of a free nonassociative symmetric $m$-ary algebra in one free variable is generated by one derivation and some right nilpotent derivations are described.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.