Relations among Some Low Rank Subspace Recovery Models (1412.2196v1)
Abstract: Recovering intrinsic low dimensional subspaces from data distributed on them is a key preprocessing step to many applications. In recent years, there has been a lot of work that models subspace recovery as low rank minimization problems. We find that some representative models, such as Robust Principal Component Analysis (R-PCA), Robust Low Rank Representation (R-LRR), and Robust Latent Low Rank Representation (R-LatLRR), are actually deeply connected. More specifically, we discover that once a solution to one of the models is obtained, we can obtain the solutions to other models in closed-form formulations. Since R-PCA is the simplest, our discovery makes it the center of low rank subspace recovery models. Our work has two important implications. First, R-PCA has a solid theoretical foundation. Under certain conditions, we could find better solutions to these low rank models at overwhelming probabilities, although these models are non-convex. Second, we can obtain significantly faster algorithms for these models by solving R-PCA first. The computation cost can be further cut by applying low complexity randomized algorithms, e.g., our novel $\ell_{2,1}$ filtering algorithm, to R-PCA. Experiments verify the advantages of our algorithms over other state-of-the-art ones that are based on the alternating direction method.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.