Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projected Robust PCA with Application to Smooth Image Recovery (2009.05478v2)

Published 21 Jul 2020 in stat.ML and cs.LG

Abstract: Most high-dimensional matrix recovery problems are studied under the assumption that the target matrix has certain intrinsic structures. For image data related matrix recovery problems, approximate low-rankness and smoothness are the two most commonly imposed structures. For approximately low-rank matrix recovery, the robust principal component analysis (PCA) is well-studied and proved to be effective. For smooth matrix problem, 2d fused Lasso and other total variation based approaches have played a fundamental role. Although both low-rankness and smoothness are key assumptions for image data analysis, the two lines of research, however, have very limited interaction. Motivated by taking advantage of both features, we in this paper develop a framework named projected robust PCA (PRPCA), under which the low-rank matrices are projected onto a space of smooth matrices. Consequently, a large class of image matrices can be decomposed as a low-rank and smooth component plus a sparse component. A key advantage of this decomposition is that the dimension of the core low-rank component can be significantly reduced. Consequently, our framework is able to address a problematic bottleneck of many low-rank matrix problems: singular value decomposition (SVD) on large matrices. Theoretically, we provide explicit statistical recovery guarantees of PRPCA and include classical robust PCA as a special case.

Citations (2)

Summary

We haven't generated a summary for this paper yet.