Rotational component spaces for infinite-type translation surfaces (1412.0633v4)
Abstract: Finite translation surfaces can be classified by the order of their singularities. When generalizing to infinite translation surfaces, however, the notion of order of a singularity is no longer well-defined and has to be replaced by new concepts. This article discusses the nature of two such concepts, recently introduced by Bowman and Valdez: linear approaches and rotational components. We show that there is a large flexibility in the spaces of rotational components and even more in the spaces of linear approaches. In particular, we prove that every finite topological space arises as space of rotational components. However, this space will still not contain enough information to describe an infinite translation surface. We showcase this through an uncountable family with the same space of rotational components but different spaces of linear approaches. Additionally, we study several known and new examples to illustrate the concept of linear approaches and rotational components.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.