Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Simplicial complexes of whisker type (1411.7890v2)

Published 28 Nov 2014 in math.AC

Abstract: Let $I\subset K[x_1,\ldots,x_n]$ be a zero-dimensional monomial ideal, and $\Delta(I)$ be the simplicial complex whose Stanley--Reisner ideal is the polarization of $I$. It follows from a result of Soleyman Jahan that $\Delta(I)$ is shellable. We give a new short proof of this fact by providing an explicit shelling. Moreover, we show that $\Delta(I)$ is even vertex decomposable. The ideal $L(I)$, which is defined to be the Stanley--Reisner ideal of the Alexander dual of $\Delta(I)$, has a linear resolution which is cellular and supported on a regular CW-complex. All powers of $L(I)$ have a linear resolution. We compute $\mathrm{depth}\ L(I)k$ and show that $\mathrm{depth}\ L(I)k=n$ for all $k\geq n$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.