Papers
Topics
Authors
Recent
2000 character limit reached

Volume doubling, Poincaré inequality and Guassian heat kernel estimate for nonnegative curvature graphs (1411.5087v4)

Published 19 Nov 2014 in math.DG, math.CO, and math.MG

Abstract: By studying the heat semigroup, we prove Li-Yau type estimates for bounded and positive solutions of the heat equation on graphs, under the assumption of the curvature-dimension inequality $CDE'(n,0)$, which can be consider as a notion of curvature for graphs. Furthermore, we derive that if a graph has non-negative curvature then it has the volume doubling property, from this we can prove the Gaussian estimate for heat kernel, and then Poincar\'e inequality and Harnack inequality. As a consequence, we obtain that the dimension of space of harmonic functions on graphs with polynomial growth is finite, which original is a conjecture of Yau on Riemannian manifold proved by Colding and Minicozzi. Under the assumption of positive curvature on graphs, we derive the Bonnet-Myers type theorem that the diameter of graphs is finite and bounded above in terms of the positive curvature by proving some Log Sobolev inequalities.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.