Papers
Topics
Authors
Recent
2000 character limit reached

Integrability and regularity of rational functions (1411.4892v1)

Published 18 Nov 2014 in math.CV, math.AG, and math.FA

Abstract: Motivated by recent work in the mathematics and engineering literature, we study integrability and non-tangential regularity on the two-torus for rational functions that are holomorphic on the bidisk. One way to study such rational functions is to fix the denominator and look at the ideal of polynomials in the numerator such that the rational function is square integrable. A concrete list of generators is given for this ideal as well as a precise count of the dimension of the subspace of numerators with a specified bound on bidegree. The dimension count is accomplished by constructing a natural pair of commuting contractions on a finite dimensional Hilbert space and studying their joint generalized eigenspaces. Non-tangential regularity of rational functions on the polydisk is also studied. One result states that rational inner functions on the polydisk have non-tangential limits at every point of the n-torus. An algebraic characterization of higher non-tangential regularity is given. We also make some connections with the earlier material and prove that rational functions on the bidisk which are square integrable on the two-torus are non-tangentially bounded at every point. Several examples are provided.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.