Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Nonlinear predictive latent process models for integrating spatio-temporal exposure data from multiple sources (1411.3479v1)

Published 13 Nov 2014 in stat.AP

Abstract: Spatio-temporal prediction of levels of an environmental exposure is an important problem in environmental epidemiology. Our work is motivated by multiple studies on the spatio-temporal distribution of mobile source, or traffic related, particles in the greater Boston area. When multiple sources of exposure information are available, a joint model that pools information across sources maximizes data coverage over both space and time, thereby reducing the prediction error. We consider a Bayesian hierarchical framework in which a joint model consists of a set of submodels, one for each data source, and a model for the latent process that serves to relate the submodels to one another. If a submodel depends on the latent process nonlinearly, inference using standard MCMC techniques can be computationally prohibitive. The implications are particularly severe when the data for each submodel are aggregated at different temporal scales. To make such problems tractable, we linearize the nonlinear components with respect to the latent process and induce sparsity in the covariance matrix of the latent process using compactly supported covariance functions. We propose an efficient MCMC scheme that takes advantage of these approximations. We use our model to address a temporal change of support problem whereby interest focuses on pooling daily and multiday black carbon readings in order to maximize the spatial coverage of the study region.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.