Marked poset polytopes: Minkowski sums, indecomposables, and unimodular equivalence
Abstract: We analyze marked poset polytopes and generalize a result due to Hibi and Li, answering whether the marked chain polytope is unimodular equivalent to the marked order polytope. Both polytopes appear naturally in the representation theory of semi-simple Lie algebras, and hence we can give a necessary and sufficient condition on the marked poset such that the associated toric degenerations of the corresponding partial flag variety are isomorphic. We further show that the set of lattice points in such a marked poset polytope is the Minkowski sum of sets of lattice points for 0-1 polytopes. Moreover, we provide a decomposition of the marked poset into indecomposable marked posets, which respects this Minkowski sum decomposition for the marked chain polytopes polytopes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.