Fast singular value decay for Lyapunov solutions with nonnormal coefficients (1410.8741v2)
Abstract: Lyapunov equations with low-rank right-hand sides often have solutions whose singular values decay rapidly, enabling iterative methods that produce low-rank approximate solutions. All previously known bounds on this decay involve quantities that depend quadratically on the departure of the coefficient matrix from normality: these bounds suggest that the larger the departure from normality, the slower the singular values will decay. We show this is only true up to a threshold, beyond which a larger departure from normality can actually correspond to faster decay of singular values: if the singular values decay slowly, the numerical range cannot extend far into the right-half plane.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.