Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Learning Object Affordance Priors from Technical Texts (1410.8326v1)

Published 30 Oct 2014 in cs.LG, cs.AI, cs.CL, and cs.RO

Abstract: Everyday activities performed by artificial assistants can potentially be executed naively and dangerously given their lack of common sense knowledge. This paper presents conceptual work towards obtaining prior knowledge on the usual modality (passive or active) of any given entity, and their affordance estimates, by extracting high-confidence ability modality semantic relations (X can Y relationship) from non-figurative texts, by analyzing co-occurrence of grammatical instances of subjects and verbs, and verbs and objects. The discussion includes an outline of the concept, potential and limitations, and possible feature and learning framework adoption.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.