Papers
Topics
Authors
Recent
2000 character limit reached

Fast Function to Function Regression (1410.7414v1)

Published 27 Oct 2014 in stat.ML and cs.LG

Abstract: We analyze the problem of regression when both input covariates and output responses are functions from a nonparametric function class. Function to function regression (FFR) covers a large range of interesting applications including time-series prediction problems, and also more general tasks like studying a mapping between two separate types of distributions. However, previous nonparametric estimators for FFR type problems scale badly computationally with the number of input/output pairs in a data-set. Given the complexity of a mapping between general functions it may be necessary to consider large data-sets in order to achieve a low estimation risk. To address this issue, we develop a novel scalable nonparametric estimator, the Triple-Basis Estimator (3BE), which is capable of operating over datasets with many instances. To the best of our knowledge, the 3BE is the first nonparametric FFR estimator that can scale to massive datasets. We analyze the 3BE's risk and derive an upperbound rate. Furthermore, we show an improvement of several orders of magnitude in terms of prediction speed and a reduction in error over previous estimators in various real-world data-sets.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.