Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Concavity of reweighted Kikuchi approximation (1410.7098v1)

Published 26 Oct 2014 in stat.ML, math.ST, and stat.TH

Abstract: We analyze a reweighted version of the Kikuchi approximation for estimating the log partition function of a product distribution defined over a region graph. We establish sufficient conditions for the concavity of our reweighted objective function in terms of weight assignments in the Kikuchi expansion, and show that a reweighted version of the sum product algorithm applied to the Kikuchi region graph will produce global optima of the Kikuchi approximation whenever the algorithm converges. When the region graph has two layers, corresponding to a Bethe approximation, we show that our sufficient conditions for concavity are also necessary. Finally, we provide an explicit characterization of the polytope of concavity in terms of the cycle structure of the region graph. We conclude with simulations that demonstrate the advantages of the reweighted Kikuchi approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.