Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Random Matrix Averages Involving Half-Integer Powers of GOE Characteristic Polynomials (1410.5645v2)

Published 21 Oct 2014 in math-ph, cond-mat.dis-nn, cond-mat.mes-hall, cond-mat.stat-mech, and math.MP

Abstract: Correlation functions involving products and ratios of half-integer powers of characteristic polynomials of random matrices from the Gaussian Orthogonal Ensemble (GOE) frequently arise in applications of Random Matrix Theory (RMT) to physics of quantum chaotic systems, and beyond. We provide an explicit evaluation of the large-$N$ limits of a few non-trivial objects of that sort within a variant of the supersymmetry formalism, and via a related but different method. As one of the applications we derive the distribution of an off-diagonal entry $K_{ab}$ of the resolvent (or Wigner $K$-matrix) of GOE matrices which, among other things, is of relevance for experiments on chaotic wave scattering in electromagnetic resonators.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.