Papers
Topics
Authors
Recent
2000 character limit reached

Radially Symmetric Solutions To The Graphic Willmore Surface Equation (1410.5547v2)

Published 21 Oct 2014 in math.DG

Abstract: We show that a smooth radially symmetric solution $u$ to the graphic Willmore surface equation is either a constant or the defining function of a half sphere in ${\mathbb R}3$. In particular, radially symmetric entire Willmore graphs in ${\mathbb R}3$ must be flat. When $u$ is a smooth radial solution over a punctured disk $D(\rho)\backslash{0}$ and is in $C1(D(\rho))$, we show that there exist a constant $\lambda$ and a function $\beta$ in $C0(D(\rho))$ such that $u''(r) =\frac{\lambda}{2}\log r+\beta(r)$; moreover, the graph of $u$ is contained in a graphical region of an inverted catenoid which is uniquely determined by $\lambda$ and $\beta(0)$. It is also shown that a radial solution on the punctured disk extends to a $C1$ function on the disk when the mean curvature is square integrable.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.