Papers
Topics
Authors
Recent
2000 character limit reached

Fast computation of Gauss quadrature nodes and weights on the whole real line (1410.5286v1)

Published 20 Oct 2014 in math.NA

Abstract: A fast and accurate algorithm for the computation of Gauss-Hermite and generalized Gauss-Hermite quadrature nodes and weights is presented. The algorithm is based on Newton's method with carefully selected initial guesses for the nodes and a fast evaluation scheme for the associated orthogonal polynomial. In the Gauss-Hermite case the initial guesses and evaluation scheme rely on explicit asymptotic formulas. For generalized Gauss-Hermite, the initial guesses are furnished by sampling a certain equilibrium measure and the associated polynomial evaluated via a Riemann-Hilbert reformulation. In both cases the $n$-point quadrature rule is computed in $\mathcal{O}(n)$ operations to an accuracy that is close to machine precision. For sufficiently large $n$, some of the quadrature weights have a value less than the smallest positive normalized floating-point number in double precision and we exploit this fact to achieve a complexity as low as $\mathcal{O}(\sqrt{n})$.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.