On the Choice of Test Statistic for Conditional Moment Inequalities (1410.4718v3)
Abstract: This paper derives asymptotic approximations to the power of Cramer-von Mises (CvM) style tests for inference on a finite dimensional parameter defined by conditional moment inequalities in the case where the parameter is set identified. Combined with power results for Kolmogorov-Smirnov (KS) tests, these results can be used to choose the optimal test statistic, weighting function and, for tests based on kernel estimates, kernel bandwidth. The results show that, in the setting considered here, KS tests are preferred to CvM tests, and that a truncated variance weighting is preferred to bounded weightings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.