Making the Best of Limited Memory in Multi-Player Discounted Sum Games (1410.4154v3)
Abstract: In this paper, we establish the existence of optimal bounded memory strategy profiles in multi-player discounted sum games. We introduce a non-deterministic approach to compute optimal strategy profiles with bounded memory. Our approach can be used to obtain optimal rewards in a setting where a powerful player selects the strategies of all players for Nash and leader equilibria, where in leader equilibria the Nash condition is waived for the strategy of this powerful player. The resulting strategy profiles are optimal for this player among all strategy profiles that respect the given memory bound, and the related decision problem is NP-complete. We also provide simple examples, which show that having more memory will improve the optimal strategy profile, and that sufficient memory to obtain optimal strategy profiles cannot be inferred from the structure of the game.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.