Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Second-Order Asymptotic Optimality in Multisensor Sequential Change Detection (1410.3815v3)

Published 14 Oct 2014 in stat.AP

Abstract: A generalized multisensor sequential change detection problem is considered, in which a number of (possibly correlated) sensors monitor an environment in real time, the joint distribution of their observations is determined by a global parameter vector, and at some unknown time there is a change in an unknown subset of components of this parameter vector. In this setup, we consider the problem of detecting the time of the change as soon as possible, while controlling the rate of false alarms. We establish the second-order asymptotic optimality (with respect to Lorden's criterion) of various generalizations of the CUSUM rule; that is, we show that their additional expected worst-case detection delay (relative to the one that could be achieved if the affected subset was known) remains bounded as the rate of false alarm goes to 0, for any possible subset of affected components. This general framework incorporates the traditional multisensor setup in which only an unknown subset of sensors is affected by the change. The latter problem has a special structure which we exploit in order to obtain feasible representations of the proposed schemes. We present the results of a simulation study where we compare the proposed schemes with scalable detection rules that are only first-order asymptotically optimal. Finally, in the special case that the change affects exactly one sensor, we consider the scheme that runs in parallel the local CUSUM rules and study the problem of specifying the local thresholds.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube