Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Local structure of closed symmetric 2-differentials (1410.1014v1)

Published 4 Oct 2014 in math.AG

Abstract: In the authors's previous work on symmetric differentials and their connection to the topological properties of the ambient manifold, a class of symmetric differentials was introduced: closed symmetric differentials ([BoDeO11] and [BoDeO13]). In this article we give a description of the local structure of closed symmetric 2-differentials on complex surfaces, with an emphasis towards the local decompositions as products of 1-differentials. We show that a closed symmetric 2-differential $w$ of rank 2 (i.e. defines two distinct foliations at the general point) has a subvariety $B_w\subset X$ outside of which $w$ is locally the product of closed holomorphic 1-differentials. The main result, theorem 2.6, gives a complete description of a (locally split) closed symmetric 2-differential in a neighborhood of a general point of $B_w$. A key feature of theorem 2.6 is that closed symmetric 2-differentials still have a decomposition as a product of 2 closed 1-differentials (in a generalized sense) even at the points of $B_w$. The (possibly multi-valued) closed 1-differentials can have essential singularities along $B_w$, but one still has a control on these essential singularities. The essential singularities come from exponentials of meromorphic functions acquiring poles along the irreducible components of $B_w$ of order bounded by the order of contact of the 2 foliations defined by the symmetric 2-differential along that irreducible component.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.