Papers
Topics
Authors
Recent
2000 character limit reached

Derivation of quantum probabilities from deterministic evolution

Published 28 Sep 2014 in quant-ph | (1409.7891v4)

Abstract: The predictions of quantum mechanics are probabilistic. Quantum probabilities are extracted using a postulate of the theory called the Born rule, the status of which is central to the "measurement problem" of quantum mechanics. Efforts to justify the Born rule from other physical principles, and thus elucidate the measurement process, have involved lengthy statistical or information-theoretic arguments. Here we show that Bohm's deterministic formulation of quantum mechanics allows the Born rule for measurements on a single system to be derived, without any statistical assumptions. We solve a simple example where the creation of an ensemble of identical quantum states, together with position measurements on those states, are described by Bohm's quantum dynamics. The calculated measurement outcomes agree with the Born-rule probabilities, which are thus a consequence of deterministic evolution. Our results demonstrate that quantum probabilities can emerge from simple dynamical laws alone, and they support the view that there is no underlying indeterminism in quantum phenomena.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.