On the strictness of the quantifier structure hierarchy in first-order logic (1409.7488v2)
Abstract: We study a natural hierarchy in first-order logic, namely the quantifier structure hierarchy, which gives a systematic classification of first-order formulas based on structural quantifier resource. We define a variant of Ehrenfeucht-Fraisse games that characterizes quantifier classes and use it to prove that this hierarchy is strict over finite structures, using strategy compositions. Moreover, we prove that this hierarchy is strict even over ordered finite structures, which is interesting in the context of descriptive complexity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.