Sobolev Type Fractional Dynamic Equations and Optimal Multi-Integral Controls with Fractional Nonlocal Conditions
Abstract: We prove existence and uniqueness of mild solutions to Sobolev type fractional nonlocal dynamic equations in Banach spaces. The Sobolev nonlocal condition is considered in terms of a Riemann-Liouville fractional derivative. A Lagrange optimal control problem is considered, and existence of a multi-integral solution obtained. Main tools include fractional calculus, semigroup theory, fractional power of operators, a singular version of Gronwall's inequality, and Leray-Schauder fixed point theorem. An example illustrating the theory is given.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.