Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bounds on Portfolio Quality (1409.5936v1)

Published 21 Sep 2014 in q-fin.PM

Abstract: The signal-noise ratio of a portfolio of p assets, its expected return divided by its risk, is couched as an estimation problem on the sphere. When the portfolio is built using noisy data, the expected value of the signal-noise ratio is bounded from above via a Cramer-Rao bound, for the case of Gaussian returns. The bound holds for `biased' estimators, thus there appears to be no bias-variance tradeoff for the problem of maximizing the signal-noise ratio. An approximate distribution of the signal-noise ratio for the Markowitz portfolio is given, and shown to be fairly accurate via Monte Carlo simulations, for Gaussian returns as well as more exotic returns distributions. These findings imply that if the maximal population signal-noise ratio grows slower than the universe size to the 1/4 power, there may be no diversification benefit, rather expected signal-noise ratio can decrease with additional assets. As a practical matter, this may explain why the Markowitz portfolio is typically applied to small asset universes. Finally, the theorem is expanded to cover more general models of returns and trading schemes, including the conditional expectation case where mean returns are linear in some observable features, subspace constraints (i.e., dimensionality reduction), and hedging constraints.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.