2000 character limit reached
Asymptotic behavior of solutions for linear parabolic equations with general measure data
Published 19 Sep 2014 in math.AP | (1409.5564v1)
Abstract: In this paper we deal with the asymptotic behavior as $t$ tends to infinity of solutions for linear parabolic equations whose model is $$ \begin{cases} u_{t}-\Delta u = \mu & \text{in}\ (0,T)\times\Omega,\[0.7 ex] u(0,x)=u_0 & \text{in}\ \Omega, \end{cases} $$ where $\mu$ is a general, possibly singular, Radon measure which does not depend on time, and $u_0\in L{1}(\Omega)$. We prove that the duality solution, which exists and is unique, converges to the duality solution (as introduced by G. Stampacchia) of the associated elliptic problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.