Papers
Topics
Authors
Recent
2000 character limit reached

Spanning trees with nonseparating paths

Published 15 Sep 2014 in math.CO | (1409.4239v1)

Abstract: We consider questions related to the existence of spanning trees in graphs with the property that after the removal of any path in the tree the graph remains connected. We show that, for planar graphs, the existence of trees with this property is closely related to the Hamiltonicity of the graph. For graphs with a 1- or 2-vertex cut, the Hamiltonicity also plays a central role. We also deal with spanning trees satisfying this property restricted to paths arising from fundamental cycles. The cycle space of a graph can be generated by the fundamental cycles of any spanning tree, and Tutte showed, that for a 3-connected graph, it can be generated by nonseparating cycles. We are also interested in the existence of a fundamental basis consisting of nonseparating cycles.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.