Algebraically coherent categories (1409.4219v3)
Abstract: We call a finitely complete category algebraically coherent when the change-of-base functors of its fibration of points are coherent, which means that they preserve finite limits and jointly strongly epimorphic pairs of arrows. We give examples of categories satisfying this condition; for instance, coherent categories, categories of interest in the sense of Orzech, and (compact) Hausdorff algebras over a semi-abelian algebraically coherent theory. We study equivalent conditions in the context of semi-abelian categories, as well as some of its consequences: including amongst others, strong protomodularity, and normality of Higgins commutators for normal subobjects, and in the varietal case, fibre-wise algebraic cartesian closedness.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.