Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

AdS/CFT Duality User Guide (1409.3575v4)

Published 11 Sep 2014 in hep-th, cond-mat.str-el, gr-qc, hep-ph, and nucl-th

Abstract: This is the draft/updated version of a textbook on "real-world" applications of the AdS/CFT duality for beginning graduate students in particle physics and for researchers in the other fields. The aim of this book is to provide background materials such as string theory, general relativity, nuclear physics, nonequilibrium physics, and condensed-matter physics as well as some key applications of the AdS/CFT duality in a single textbook. Contents: (1) Introduction, (2) General relativity and black holes, (3) Black holes and thermodynamics, (4) Strong interaction and gauge theories, (5) The road to AdS/CFT, (6) The AdS spacetime, (7) AdS/CFT - equilibrium, (8) AdS/CFT - adding probes, (9) Basics of nonequilibrium physics, (10) AdS/CFT - nonequilibrium, (11) Other AdS spacetimes, (12) Applications to quark-gluon plasma, (13) Basics of phase transition, (14) AdS/CFT - phase transition, (15) Exercises.

Citations (215)

Summary

  • The paper analytically reviews the foundational principles of U(1) and U(Nc) gauge theories, developing essential mathematical concepts for understanding symmetry, gauge fields, and field interactions.
  • For U(1) theory, the review details achieving local gauge invariance by introducing a gauge field and covariant derivative, explaining the gauge field action and coupling constant.
  • For U(Nc) theory, the paper extends the formalism to multi-component fields and adjoint representations, introducing matrix gauge fields, an extended covariant derivative, and the definition of field strength.

An Examination of Gauge Theory Fundamentals

This paper provides an analytical review of gauge theory, focusing on the principles governing U(1)U(1) and $U(\Nc)$ gauge theories. The authors meticulously develop the mathematical foundations necessary for understanding these theories, which are crucial in the context of modern theoretical physics. The discussions encapsulated in this paper bridge pivotal aspects of symmetry operations, gauge field interactions, and the mathematical underpinnings that describe the dynamics of scalar fields in gauge theories.

U(1)U(1) Gauge Theory

Initially, the paper revisits the U(1)U(1) gauge theory, notably examining the symmetry implications and modifying the theory to accommodate local gauge invariance. The authors start by considering a complex scalar field described by a Lagrangian density $\calL$, which remains invariant under global U(1)U(1) transformations, highlighting the mathematical form ϕUϕ\phi \rightarrow U \phi with U=eiαU = e^{i\alpha}. For local U(1)U(1) transformations, gauge symmetry requires the introduction of a gauge field AμA_\mu, thereby incorporating a covariant derivative $D_\mu \phi = (\del_\mu - iA_\mu)\phi$. This ensures the field’s invariance under local transformations by adjusting the transformation law for AμA_\mu itself.

The gauge field's action is expressed as $\calL = - \frac{1}{4e^2} F^{\mu\nu}F_{\mu\nu}$, and the role of the coupling constant ee is elucidated via normalization, delineating its function in the formulation of gauge field dynamics.

$U(\Nc)$ Gauge Theory

Further, the paper transitions to $U(\Nc)$ gauge theory, exploring fields with multiple components. A scalar field, ϕi\phi_i, with $\Nc$ components exhibits a global $U(\Nc)$ symmetry. By promoting this symmetry to a local one, gauge fields AμA_\mu are introduced. These fields transform as Hermitian $\Nc \times \Nc$ matrices, affirming local gauge invariance through the transformation $A_\mu \rightarrow U A_\mu U^{-1} - i(\del_\mu U)U^{-1}$.

Adjacent to this discussion, the paper explores the adjoint representation, wherein fields transform via ϕAUϕAU1\phi_A \rightarrow U\phi_A U^{-1}. The gauge covariant derivative is extended to these representations as $D_\mu \phi_A = \del_\mu \phi_A - i[A_\mu, \phi_A]$, asserting that $F_{\mu\nu} = \del_\mu A_\nu - \del_\nu A_\mu - i[A_\mu, A_\nu]$ forms the basis for defining field strength within these theories.

Theoretical Implications and Future Directions

The implications of this detailed exposition in gauge theory are manifold. The constructs of U(1)U(1) and $U(\Nc)$ gauge theories form the backbone of various quantum field theories, including the Standard Model. Understanding these foundational principles aids in exploring more complex interactions in particle physics and elaborating on theories like quantum chromodynamics and electroweak interactions.

Looking forward, opportunities abound for integrating such formalism within emerging theoretical frameworks such as AdS/CFT correspondence and other non-perturbative approaches in quantum gravity. These constructs will continue to fuel advancements in theoretical physics, especially in contexts demanding higher symmetry contexts or involving complex field representations.

In conclusion, this thorough examination of gauge theory foundations is an essential resource for researchers aiming to deepen their understanding of field symmetries and gauge invariance's role in the broader context of theoretical physics. It provides a rigorous template from which further exploration and theoretical advancements may proceed.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube