Papers
Topics
Authors
Recent
2000 character limit reached

Separatrix splitting at a Hamiltonian $0^2 iω$ bifurcation (1409.3042v1)

Published 10 Sep 2014 in math.DS

Abstract: We discuss the splitting of a separatrix in a generic unfolding of a degenerate equilibrium in a Hamiltonian system with two degrees of freedom. We assume that the unperturbed fixed point has two purely imaginary eigenvalues and a double zero one. It is well known that an one-parametric unfolding of the corresponding Hamiltonian can be described by an integrable normal form. The normal form has a normally elliptic invariant manifold of dimension two. On this manifold, the truncated normal form has a separatrix loop. This loop shrinks to a point when the unfolding parameter vanishes. Unlike the normal form, in the original system the stable and unstable trajectories of the equilibrium do not coincide in general. The splitting of this loop is exponentially small compared to the small parameter. This phenomenon implies non-existence of single-round homoclinic orbits and divergence of series in the normal form theory. We derive an asymptotic expression for the separatrix splitting. We also discuss relations with behaviour of analytic continuation of the system in a complex neighbourhood of the equilibrium.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.