Papers
Topics
Authors
Recent
2000 character limit reached

Relativistic Lagrangian displacement field and tensor perturbations (1409.2688v2)

Published 5 Sep 2014 in gr-qc and astro-ph.CO

Abstract: We investigate the purely spatial Lagrangian coordinate transformation from the Lagrangian to the basic Eulerian frame. We demonstrate three techniques for extracting the relativistic displacement field from a given solution in the Lagrangian frame. These techniques are (a) from defining a local set of Eulerian coordinates embedded into the Lagrangian frame; (b) from performing a specific gauge transformation; and (c) from a fully non-perturbative approach based on the ADM split. The latter approach shows that this decomposition is not tied to a specific perturbative formulation for the solution of the Einstein equations. Rather, it can be defined at the level of the non-perturbative coordinate change from the Lagrangian to the Eulerian description. Studying such different techniques is useful because it allows us to compare and develop further the various approximation techniques available in the Lagrangian formulation. We find that one has to solve the gravitational wave equation in the relativistic analysis, otherwise the corresponding Newtonian limit will necessarily contain spurious non-propagating tensor artefacts at second order in the Eulerian frame. We also derive the magnetic part of the Weyl tensor in the Lagrangian frame, and find that it is not only excited by gravitational waves but also by tensor perturbations which are induced through the non-linear frame-dragging. We apply our findings to calculate for the first time the relativistic displacement field, up to second order, for a $\Lambda$CDM Universe in the presence of a local primordial non-Gaussian component. Finally, we also comment on recent claims about whether mass conservation in the Lagrangian frame is violated.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.