Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the pathwise approximation of stochastic differential equations (1409.2362v3)

Published 8 Sep 2014 in math.NA

Abstract: We consider one-step methods for integrating stochastic differential equations and prove pathwise convergence using ideas from rough path theory. In contrast to alternative theories of pathwise convergence, no knowledge is required of convergence in pth mean and the analysis starts from a pathwise bound on the sum of the truncation errors. We show how the theory is applied to the Euler-Maruyama method with fixed and adaptive time-stepping strategies. The assumption on the truncation errors suggests an error-control strategy and we implement this as an adaptive time-stepping Euler-Maruyama method using bounded diffusions. We prove the adaptive method converges and show some computational experiments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.