Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Construction of a Mean Square Error Adaptive Euler--Maruyama Method with Applications in Multilevel Monte Carlo (1411.5515v2)

Published 20 Nov 2014 in math.NA

Abstract: A formal mean square error expansion (MSE) is derived for Euler--Maruyama numerical solutions of stochastic differential equations (SDE). The error expansion is used to construct a pathwise a posteriori adaptive time stepping Euler--Maruyama method for numerical solutions of SDE, and the resulting method is incorporated into a multilevel Monte Carlo (MLMC) method for weak approximations of SDE. This gives an efficient MSE adaptive MLMC method for handling a number of low-regularity approximation problems. In low-regularity numerical example problems, the developed adaptive MLMC method is shown to outperform the uniform time stepping MLMC method by orders of magnitude, producing output whose error with high probability is bounded by TOL>0 at the near-optimal MLMC cost rate O(TOL{-2}log(TOL)4).

Summary

We haven't generated a summary for this paper yet.