Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A summation formula for the Rankin-Selberg monoid and a nonabelian trace formula (1409.2360v5)

Published 8 Sep 2014 in math.NT

Abstract: Let $F$ be a number field and let $\mathbb{A}_F$ be its ring of adeles. Let $B$ be a quaternion algebra over $F$ and let $\nu:B \to F$ be the reduced norm. Consider the reductive monoid $M$ over $F$ whose points in an $F$-algebra $R$ are given by \begin{align*} M(R):={(\gamma_1,\gamma_2) \in (B \otimes_F R){2}:\nu (\gamma_1)=\nu(\gamma_2)}. \end{align*} Motivated by an influential conjecture of Braverman and Kazhdan we prove a summation formula analogous to the Poisson summation formula for certain spaces of functions on the monoid. As an application, we define new zeta integrals for the Rankin-Selberg $L$-function and prove their basic properties. We also use the formula to prove a nonabelian twisted trace formula, that is, a trace formula whose spectral side is given in terms of automorphic representations of the unit group of $M$ that are isomorphic (up to a twist by a character) to their conjugates under a simple nonabelian Galois group.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.