Combinatorial aspects of extensions of Kronecker modules (1409.0338v1)
Abstract: Let kK be the path algebra of the Kronecker quiver and consider the category of finite dimensional right modules over kK (called Kronecker modules). We prove that extensions of Kronecker modules are field independent up to Segre classes, so they can be described purely combinatorially. We use in the proof explicit descriptions of particular extensions and a variant of the well known Green formula for Ringel-Hall numbers, valid over arbitrary fields. We end the paper with some results on extensions of preinjective Kronecker modules, involving the dominance ordering from partition combinatorics and its various generalizations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.