Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Decreasing flow uncertainty in Bayesian inverse problems through Lagrangian drifter control (1408.6288v1)

Published 27 Aug 2014 in stat.CO

Abstract: Commonplace in oceanography is the collection of ocean drifter positions. Ocean drifters are devices that sit on the surface of the ocean and move with the flow, transmitting their position via GPS to stations on land. Using drifter data, it is possible to obtain a posterior on the underlying flow. This problem, however, is highly underdetermined. Through controlling an ocean drifter, we attempt to improve our knowledge of the underlying flow. We do this by instructing the drifter to explore parts of the flow currently uncharted, thereby obtaining fresh observations. The efficacy of a control is determined by its effect on the variance of the posterior distribution. A smaller variance is interpreted as a better understanding of the flow. We show a systematic reduction in variance can be achieved by utilising controls that allow the drifter to navigate new or interesting flow structures, a good example of which are eddies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.