Papers
Topics
Authors
Recent
2000 character limit reached

Inverse Obstacle scattering in two dimensions with multiple frequency data and multiple angles of incidence (1408.5436v1)

Published 22 Aug 2014 in math.NA, math-ph, math.MP, and physics.comp-ph

Abstract: We consider the problem of reconstructing the shape of an impenetrable sound-soft obstacle from scattering measurements. The input data is assumed to be the far-field pattern generated when a plane wave impinges on an unknown obstacle from one or more directions and at one or more frequencies. It is well known that this inverse scattering problem is both ill posed and nonlinear. It is common practice to overcome the ill posedness through the use of a penalty method or Tikhonov regularization. Here, we present a more physical regularization, based simply on restricting the unknown boundary to be band-limited in a suitable sense. To overcome the nonlinearity of the problem, we use a variant of Newton's method. When multiple frequency data is available, we supplement Newton's method with the recursive linearization approach due to Chen. During the course of solving the inverse problem, we need to compute the solution to a large number of forward scattering problems. For this, we use high-order accurate integral equation discretizations, coupled with fast direct solvers when the problem is sufficiently large.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.