Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Infinitely presented graphical small cancellation groups are acylindrically hyperbolic (1408.4488v3)

Published 19 Aug 2014 in math.GR

Abstract: We prove that infinitely presented graphical $Gr(7)$ small cancellation groups are acylindrically hyperbolic. In particular, infinitely presented classical $C(7)$-groups and, hence, classical $C'(\frac{1}{6})$-groups are acylindrically hyperbolic. We also prove the analogous statements for the larger class of graphical small cancellation presentations over free products. We construct infinitely presented classical $C'(\frac{1}{6})$-groups that provide new examples of divergence functions of groups.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.