Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compressive Sampling of Polynomial Chaos Expansions: Convergence Analysis and Sampling Strategies (1408.4157v3)

Published 18 Aug 2014 in math.PR

Abstract: Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with high-dimensional random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as {\it coherence}, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an $\ell_1$-minimization problem. Utilizing asymptotic results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under the respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the {\it coherence-optimal} sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.