Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Efficient Exploration of Multi-Modal Posterior Distributions (1408.3969v1)

Published 18 Aug 2014 in astro-ph.IM and stat.CO

Abstract: The Markov Chain Monte Carlo (MCMC) algorithm is a widely recognised as an efficient method for sampling a specified posterior distribution. However, when the posterior is multi-modal, conventional MCMC algorithms either tend to become stuck in one local mode, become non-Markovian or require an excessively long time to explore the global properties of the distribution. We propose a novel variant of MCMC, mixed MCMC, which exploits a specially designed proposal density to allow the generation candidate points from any of a number of different modes. This new method is efficient by design, and is strictly Markovian. We present our method and apply it to a toy model inference problem to demonstrate its validity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.