Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dynamic Integer Sets with Optimal Rank, Select, and Predecessor Search

Published 13 Aug 2014 in cs.DS | (1408.3045v2)

Abstract: We present a data structure representing a dynamic set S of w-bit integers on a w-bit word RAM. With |S|=n and w > log n and space O(n), we support the following standard operations in O(log n / log w) time: - insert(x) sets S = S + {x}. - delete(x) sets S = S - {x}. - predecessor(x) returns max{y in S | y< x}. - successor(x) returns min{y in S | y >= x}. - rank(x) returns #{y in S | y< x}. - select(i) returns y in S with rank(y)=i, if any. Our O(log n/log w) bound is optimal for dynamic rank and select, matching a lower bound of Fredman and Saks [STOC'89]. When the word length is large, our time bound is also optimal for dynamic predecessor, matching a static lower bound of Beame and Fich [STOC'99] whenever log n/log w=O(log w/loglog w). Technically, the most interesting aspect of our data structure is that it supports all the above operations in constant time for sets of size n=w{O(1)}. This resolves a main open problem of Ajtai, Komlos, and Fredman [FOCS'83]. Ajtai et al. presented such a data structure in Yao's abstract cell-probe model with w-bit cells/words, but pointed out that the functions used could not be implemented. As a partial solution to the problem, Fredman and Willard [STOC'90] introduced a fusion node that could handle queries in constant time, but used polynomial time on the updates. We call our small set data structure a dynamic fusion node as it does both queries and updates in constant time.

Citations (71)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.