Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A process of rumor scotching on finite populations (1408.1997v3)

Published 9 Aug 2014 in physics.soc-ph and cond-mat.stat-mech

Abstract: Rumor spreading is a ubiquitous phenomenon in social and technological networks. Traditional models consider that the rumor is propagated by pairwise interactions between spreaders and ignorants. Spreaders can become stiflers only after contacting spreaders or stiflers. Here we propose a model that considers the traditional assumptions, but stiflers are active and try to scotch the rumor to the spreaders. An analytical treatment based on the theory of convergence of density dependent Markov chains is developed to analyze how the final proportion of ignorants behaves asymptotically in a finite homogeneously mixing population. We perform Monte Carlo simulations in random graphs and scale-free networks and verify that the results obtained for homogeneously mixing populations can be approximated for random graphs, but are not suitable for scale-free networks. Furthermore, regarding the process on a heterogeneous mixing population, we obtain a set of differential equations that describes the time evolution of the probability that an individual is in each state. Our model can be applied to study systems in which informed agents try to stop the rumor propagation. In addition, our results can be considered to develop optimal information dissemination strategies and approaches to control rumor propagation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.