2000 character limit reached
$p$-Selmer growth in extensions of degree $p$ (1408.1151v3)
Published 6 Aug 2014 in math.NT
Abstract: There is a known analogy between growth questions for class groups and for Selmer groups. If $p$ is a prime, then the $p$-torsion of the ideal class group grows unboundedly in $\mathbb{Z}/p\mathbb{Z}$-extensions of a fixed number field $K$, so one expects the same for the $p$-Selmer group of a nonzero abelian variety over $K$. This Selmer group analogue is known in special cases and we prove it in general, along with a version for arbitrary global fields.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.