Some q-analogues of (super)congruences of Beukers, Van Hamme and Rodriguez-Villegas
Abstract: For any odd prime p we obtain q-analogues of Van Hamme's supercongruence: $$ \sum_{k=0}{\frac{p-1}{2}}{2k\choose k}3\frac{1}{64k} \equiv 0 \pmod{p2} \quad\text{for}\quad p\equiv 3\pmod 4, $$ and Rodriguez-Villegas' Beukers-like supercongruences involving products of three binomial coefficients. For example, we prove that \begin{align*} \sum_{k=0}{\frac{p-1}{2}} {2k\brack k}{q2}3 \frac{q{2k}}{(-q2;q2)_k2 (-q;q){2k}2} &\equiv 0\pmod{[p]2} \quad\text{for}\quad p\equiv 3\pmod 4, \ \sum_{k=0}{\frac{p-1}{2}}{2k\brack k}{q3}\frac{(q;q3)_k (q{2};q3){k} q{3k} }{ (q{6};q{6})_k2 } &\equiv 0 \pmod{[p]2}\quad\text{for}\quad p\equiv 2\pmod{3}, \end{align*} where $[p]=1+q+\cdots+q{p-1}$, $(a;q)_n=(1-a)(1-aq)\cdots(1-aq{n-1})$, and ${n\brack k}_q$ denotes the q-binomial coefficient. Actually, our results give q-analogues of Z.-H. Sun's and Z.-W. Sun's generalizations of the above Beukers-like supercongruences. Our proof uses the theory of basic hypergeometric series including a new q-Clausen-type summation formula.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.