Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 163 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Spectral Approximation for Quasiperiodic Jacobi Operators (1408.0370v2)

Published 2 Aug 2014 in math.SP and math.NA

Abstract: Quasiperiodic Jacobi operators arise as mathematical models of quasicrystals and in more general studies of structures exhibiting aperiodic order. The spectra of these self-adjoint operators can be quite exotic, such as Cantor sets, and their fine properties yield insight into associated dynamical systems. Quasiperiodic operators can be approximated by periodic ones, the spectra of which can be computed via two finite dimensional eigenvalue problems. Since long periods are necessary to get detailed approximations, both computational efficiency and numerical accuracy become a concern. We describe a simple method for numerically computing the spectrum of a period-$K$ Jacobi operator in $O(K2)$ operations, and use it to investigate the spectra of Schr\"odinger operators with Fibonacci, period doubling, and Thue-Morse potentials.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.